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1 Projectives and injectives

1.1 R-mod has enough projectives an injectives

1.1.1 Enough projectives

Proposition 1.1. Let R be a commutative ring with unity. The category of R-modules has
enough projectives.

Proof. Let M be an R-module. Then M is a quotient of a free R-module F , for example,
take the free module generated by a set of generators for M . So we have a surjection F →M .
Since F is free, it is also projective.

1.1.2 Enough injectives

Many of the definitions and lemmas in this section follow Sections 15.53 and 15.54 of the
Stacks Project, see https://stacks.math.columbia.edu/tag/01D8.

Lemma 1.2. An abelian group is injective (in the category of abelian groups) if and only if
it is divisible.

Proof. (Injective =⇒ divisible) Let Q be an injective abelian group. Let q ∈ Q, and consider
the map Z → Q, 1 7→ q. Since Q is injective, the following diagram can be completed to a
homomorphism φ : 1

n
Z→ Q.

0 Z 1
n
Z

Q

17→a
φ

For any n ∈ Z and any q ∈ Q, we get nφ
(
1
n

)
= φ(1) = q, so the map n : Q→ Q is surjective,

hence Q is divisible.
(Divisible =⇒ injective) Let Q be a divisible abelian group, and suppose we have the

diagram below. We need to construct h making the diagram commute.

0 A C

Q

f

g
h

Consider the set S of pairs (B, hB) where A ⊂ B ⊂ C and hB : B → Q is a lift making the
following diagram commute.

A B C

Q

f

g
hB
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We give S a partial order by (B, hB) ≤ (B′, hB′) when B ⊂ B′ and hB′|B = hB.

A B B′ C

Q

f

g
hB

hB′

We want to apply Zorn’s lemma to S, so we need to show that any ascending chain has an
upper bound. Let (Bi, hBi

) be an ascending chain.

A B1 B2 · · ·

Q

f

g
hB1

hB2

Then an upper bound is given by(B̃, hB̃) where B̃ is the subgroup generated by
⋃
iBi and

the map hB̃ is defined by hB̃(b) = hB(b) for b ∈ B. Thus Zorn’s lemma applies to S, so there
is a maximal element (Bmax, hBmax).

If we can show that Bmax = C, and then we are done. To do this, it is sufficient to show
that for any pair (B, hB) such that B 6= C, there is (B′, hB′) ∈ S with B ( B′, since if we do
this, then if Bmax 6= C, there is a larger subgroup strictly containing Bmax with an extension,
contradicting maximality of Bmax, and resulting in the conclusion that Bmax = C.

Now we show that if (B, hB) ∈ S with B 6= C, there exists (B′, hB′) ∈ S with B ( B′

and hB′ |B = hB. Let (B, hB) ∈ S with B 6= C and choose c ∈ C \ B, and let Bc = B + c =
B + Zc ⊂ B be the subgroup generated by B and c.

A B Bc C

Q

f

g

6=

hB

We consider two cases:

1. There does not exist n ∈ Z≥1 such that nc ∈ B.

2. There exists n ∈ Z≥1 such that nc ∈ B.

In case (1), Bc = B+Zc = B⊕Zc, and hB can be extended to hBc : Bc → Q by hBc |B = hB
and hBc(c) = 0. (Or set hBc(c) to be anything, it doesn’t have to be zero.) Thus Bc is a
strictly larger extension than B.

In case (2), let n ∈ Z≥1 be the smallest integer so that nc ∈ B. Finally, we use the fact
that Q is divisible to choose q ∈ Q such that nq = hB(nc). Consider the map π : B ⊕ Z→
Bc, (b,m) 7→ b+mc, which fits into the exact sequence

0→ kerπ → B ⊕ Zc π−→ Bc → 0
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and (via the first isomorphism theorem) induces an isomorphism (B⊕Zc)/ kerπ ∼= Bc. Now
consider the map

h̃ :B ⊕ Z→ Q h̃(b,m) = hB(b) +mq

If (b,m) ∈ kerπ so that b + mc = 0, then −mc ∈ B, so |m| ≥ n and n divides m (by
minimality of n), so m = nt for some t ∈ Z, and then

h̃(b,m) = hB(b) +mq = hB(−mc) +mq = hB(−tnc) + tnq = t(−hB(nc) + nq) = 0

This shows that ker π ⊂ ker h̃. Thus h̃ factors through (B ⊕ Zc)/ kerπ ∼= Bc to give a map
hBc : Bc → Q satisfying hBc(b+mc) = hB(b) +mq and in particular hBc(b+ 0c) = hB(b), so
hBc extends hB.

A B Bc C

Q

f

g

6=

hB

hBc

Remark 1.3. The proof given above that an injective abelian group is divisible also holds in
the category of finitely generated abelian groups, since the groups used, Z and 1

n
Z, are both

finitely generated. That is to say, an injective object in the category of finitely generated
abelian groups must be divisible.

Remark 1.4. The simplest examples of divisible abelian groups are Q and Q/Z, so these
are injective Z-modules. Note that there are no finite abelian groups which are divisible.

The next goal is to prove the following.

Theorem 1.5. Let R be a ring. The category of R-modules has enough injectives.

Definition 1.6. Let R be a ring and M an R-module. We define M∨ = HomZ(M,Q/Z).
We view M∨ as an R-module via the action

(r · φ)(m) = φ(r ·m)

where r ∈ R,m ∈M,φ ∈M∨, and r ·m is the action of R on M .
We view HomZ(−,Q/Z) = M 7→ M∨ as a contravariant functor from the category of

R-modules to itself. Note that because Q/Z is divisible, it is an injective abelian group, so
the functor HomZ(−,Q/Z) is exact (as a functor from abelian groups to abelian groups), so
it is an exact functor from R-mod to itself.

Definition 1.7. Let M be an R-module. The evaluation map is

ev : M → (M∨)∨ m 7→ (φ 7→ φ(m)) ev(m)(φ) = φ(m)
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Definition 1.8. Let R be a ring and M an R-module. The free module on M is

F (M) =
⊕
m∈M

R[m]

with the accompanying surjection

F (M)→M
∑
i

ri[mi] 7→
∑
i

rimi

We think of M 7→ (F (M)→M) as a functor from R-mod to the arrow category of R-mod.

Definition 1.9. Let R be a ring and M an R-module. Set J(M) = (F (M∨))∨.

Remark 1.10. Note that as an abelian group, J(M) is torsion because Q/Z is torsion.

Theorem 1.11. Let R be a ring and M an R-module.

1. The evaluation map ev : M → (M∨)∨ is injective.

2. There is a (canonical) embedding M ↪→ J(M).

3. R∨ is an injective R-module.

4. J(M) is an injective R-module.

5. The category of R-modules has enough injectives.

Proof. (1) We show that if x ∈M and x 6= 0, then ev(x) 6= 0. Equivalently, we need to show
that there is φ ∈ M∨ = HomZ(M,Q/Z) such that ev(x)(φ) = φ(x) 6= 0. Let x ∈ M,x 6= 0.
Let M ′ ⊂M be the abelian subgroup generated by x (NOT the R-submodule generated by
x, this is not the same thing). Then there is a nonzero map ψ : M ′ → Q/Z which does not
vanish on x (for example, if nx = 0, send x to 1

n
). Then because Q/Z is an injective abelian

group, this extends to a map ψ̃ : M → Q/Z which does not vanish on x.

0 M ′ M

Q/Z

ψ
ψ̃

Then ev(x)(ψ̃) = ψ̃(x) 6= 0. Hence ev is injective.
(2) Consider the canonical surjection F (M∨) → M∨. Apply the contravariant, exact

functor (−)∨ to obtain (M∨)∨ → (F (M∨))∨ = J(M). Since (−)∨ is exact, the surjection
becomes an injection. Thus we have injections

M
ev−→ (M∨)∨ → J(M)

which is to say, M embeds into J(M).
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(3) Let N be an R-module. As some people would say,

HomR(N,HomZ(R,Q/Z)) = HomZ(N,Q/Z)

However, I think that it’s sloppy to write an equality here. What this really means is that
there is a natural isomorphism of R-modules

HomR(N,HomZ(R,Q/Z))→ HomZ(N,Q/Z) φ 7→
(
n 7→ φ(n)(1)

)
with inverse given by

HomZ(N,Q/Z)→ HomR(N,HomZ(R,Q/Z)) ψ 7→
(
n 7→

(
1 7→ ψ(n)

))
(details left unchecked by me, the author). By “natural isomorphism,” I mean that this is
furthermore an isomorphism of functors

(−)∨ = HomZ(−,Q/Z) ∼= HomR(−,HomZ(R,Q/Z)) = HomR(−, R∨)

(once again, details left unchecked). Therefore since (−)∨ is exact, HomR(−, R∨) is exact,
so R∨ is injective.

(4) Note that we have an isomorphism of R-modules

J(M) = (F (M∨))∨ = HomZ

(⊕
φ∈M∨

R[φ],Q/Z

)
∼=
∏
φ∈M∨

HomZ(R[φ],Q/Z) ∼=
∏
φ∈M∨

R∨

Since a product of injective objects is injective and R∨ is injective by (3), this product is
injective.

(5) This is immediate from (2) and (4).

1.1.3 Baer’s criterion

Another approach (such as that in Dummit and Foote [1]) to showing that the category
R-mod has enough injectives uses Baer’s criterion, which we give below.

Proposition 1.12 (Baer’s criterion). Let R be a ring and Q an R-module. Then Q is
injective (in the category of R-modules) if and only if for every left ideal I ⊂ R any R-module

homomorphism φ : I → Q can be extended to an R-module homomorphism φ̃ : R→ Q.

Proof. Proposition 36 of Dummit and Foote [1].

1.2 Projectives and injectives in some subcategories of abelian
groups

Proposition 1.13. The category of finitely generated abelian groups has enough projectives,
but not enough injectives. (In fact, there are no nonzero injective objects at all in this
category).
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Proof. Every finitely generated abelian group A is a finite direct sum of cyclic groups,

A ∼= Zr ⊕
⊕
i

Z/niZ

Then A is a quotient of a a free module on the same number of generators by sending
a generator for each infinite cyclic summand to a generator for the corresponding cyclic
summand of A. That is, we have the surjection

Zr ⊕
⊕

i Z Zr ⊕
⊕

i Z/niZ
Idr ⊕π

where π sends the generator of the ith summand Z to the generator of Z/niZ. Hence there
are enough projectives.

Now suppose A is an injective object in the category of finitely generated abelian groups.
By remark 1.3, A is divisible. However, there are no divisible finitely generated abelian
groups, except the trivial group.

Proposition 1.14. The category of torsion abelian groups has enough injectives, but not
enough projectives.

Proof. First, we show that there are enough injectives. Let M be a torsion abelian group.
Then we have an embedding M → J(M), and by Theorem 1.11, J(M) is injective. Note
that the torsion subgroup of a divisible group is divisible, and that M lands in the torsion
subgroup of J(M), so M embeds into an injective object.

Now we show that there are not enough projectives 1. To show there are not enough
projectives, we show that there is no projective which surjects onto Z/2Z. Suppose there is
a projective object P with a map φ : P → Z/2Z and an element x ∈ P so that φ(x) = 1.
For k ≥ 1, we have the quotient map π : Z/2kZ→ Z/2Z, 1 7→ 1. Since P is projective, there

is a lift φ̃ : P → Z/2kZ with φ̃(x) = 1.

P

Z/2kZ Z/2Z 0

φ
φ̃

π

Note that any element of Z/2kZ which maps to 1 under π is a generator, since it is coprime

to 2k. In particular, φ̃(x) is a generator of Z/2kZ, so x ∈ P has order at least 2k. Since
k was arbitrary, this shows that x has arbitrarily large order so x is not torsion, which is
impossible since P is a torsion group. Thus P does not exist.

1In fact, there are no nontrivial projective objects in this category, but the proof given here
https://math.stackexchange.com/questions/1038786/existence-of-projectives-in-the-category-of-torsion-
abelian-groups requires some knoweldge about Prufer groups, so we omit it. This proof is also given at that
source, in the original question.
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1.3 Computations of Ext groups

Review check. Outline the process of computing ExtnR(A,B) using projective an injective
resolutions.

Remark 1.15. We recall the outline of computing Ext groups via projective and injective
resolutions. Let R be a ring and let A,B be R-modules. Given a projective resolution of A

· · · → P1 → P0 → A→ 0

we apply the contravariant functor HomR(−, B) and drop the A term to obtain a chain
complex

0→ HomR(P0, B)→ HomR(P1, B)→ · · ·

The ith homology of this chain complex is ExtiR(A,B). Alternatively, one may being with
an injective resolution of B,

0→ B → I0 → I1 → · · ·

and apply the covariant functor HomR(A,−) and drop the B term to obtain a chain complex

0→ HomR(A, I0)→ HomR(A, I1)→ · · ·

The ith homology of this chain complex is also ExtiR(A,B).

The following computations of Ext groups are all examples, exercises, or theorems from
Dummit and Foote [1].

Proposition 1.16. Let A be an abelian group. Then

ExtiZ(Z/mZ, A) ∼=


mA i = 0

A/mA i = 1

0 i ≥ 2

Proof. We have a projective resolution of Z/mZ

0→ Z m−→ Z→ Z/mZ→ 0

Then we apply the contravariant functor HomZ(−, A) and drop the Z/mZ term to obtain
a chain complex depicted below. Using the canoncial isomorphism HomZ(Z, A) ∼= A via
φ 7→ φ(1), we get an isomorphism of chain complexes.

0 HomZ(Z, A) HomZ(Z, A) 0

0 A A 0

m

∼= ∼=

m

Thus Ext0Z(Z/mZ, A) ∼= mA and Ext1Z(Z/mZ, A) ∼= A/mA, and the higher ext groups vanish.
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Proposition 1.17. Let m, d be integers with d|m, and let A be an abelian group of exponent
m (aka A is a Z/mZ-module). Then

ExtiZ/mZ(Z/dZ, A) =


dA i = 0

m/dA/dA i = 1, 3, . . .

dA/(m/d)A i = 2, 4, . . .

Proof. We begin with a projective (free) resolution of Z/dZ (in the category of Z/mZ-
modules).

· · · Z/mZ Z/mZ Z/mZ Z/mZ Z/dZ 0
m/d d m/d d π

The map π is the quotient map 1 7→ 1, whose kernel is generated by m/d, which justifies
exactness at the first Z/mZ term. Exactness at the other terms is clear.

Then we apply the contravariant functor HomZ/mZ(−, A) and drop the Z/dZ term to ob-
tain the upper chain complex depicted below. Using the isomorphism HomZ/mZ(Z/mZ, A) ∼=
A, we get an isomorphism of chain complexes.

0 HomZ/mZ(Z/mZ, A) HomZ/mZ(Z/mZ, A) HomZ/mZ(Z/mZ, A) · · ·

0 A A A · · ·

d

∼=

m/d

∼=

d

∼=

d m/d d

The ith homology of this periodic chain complex is ExtiZ/mZ(Z/dZ, A), so we read off exactly
the homology as claimed.

Lemma 1.18. Z/mZ is an injective Z/mZ-module.

Proof. By Baer’s criterion 1.12, it suffices to show that for any ideal I ⊂ Z/mZ and any

Z/mZ-linear map I → Z/mZ, there is an extension φ̃ : Z/mZ→ Z/mZ. An ideal of Z/mZ
is a subgroup of the form nZ/mZ. Any such subgroup can be written as dZ/mZ where
d = gcd(n,m), in particular, d|m.

Suppose we have φ : dZ/mZ → Z/mZ. By linearity, φ is determined by φ(d). Since d
has order m/d, it must be mapped to something of order m/d, so it is mapped to something
in the subgroup dZ/mZ (since finite cyclic groups have a unique subgroup of each divisor

order), so φ(d) = kd. Then we extend φ to Z/mZ by setting φ̃(1) = k.

Proposition 1.19. Let m, d be integers with d|m, and let A be an abelian group of exponent

m (aka A is a Z/mZ-module). Let Â = HomZ/mZ(A,Z/mZ) be the dual group of A. Then

ExtiZ/mZ(A,Z/dZ) =


dÂ i = 0

m/dÂ/dÂ i = 1, 3, . . .

dÂ/(m/d)Â i = 2, 4, . . .
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Proof. By the previous lemma 1.18, Z/mZ is an injective Z/mZ-module. Thus the following
is an injective resolution of Z/dZ (in the category of Z/mZ-modules).

0→ Z/dZ ↪→ Z/mZ d−→ Z/mZ m/d−−→ Z/mZ d−→ Z/mZ m/d−−→ · · ·

Then we apply the covariant functor HomZ/mZ(A,−) and drop the first term to obtain the
chain complex below. We omit the subscript Z/mZ for Hom.

0 Hom(A,Z/mZ) Hom(A,Z/mZ) Hom(A,Z/mZ) · · ·d m/d d

From this, we read off the necessary homology.

Remark 1.20. A finite abelian group is (non-canonically) isomorphic to its dual, but an
infinite abelian group need not be.

1.3.1 Injectives and projectives

Proposition 1.21. Let Q be an injective R-module. Then ExtnR(A,Q) = 0 for all R-modules
A and all n ≥ 1.

Proof. We have the somewhat trivial injective resolution of Q

0→ Q→ Q→ 0

Then we apply the contravariant functor HomR(A,−) and drop the first term to obtain the
even more trivial chain complex

0→ HomR(A,Q)→ 0

whose ith homology is ExtiR(A,Q). Thus Ext0R(A,Q) = HomR(A,Q) (as always), and higher
Ext groups vanish.

Example 1.22. For R = Z, we know that injective is equivalent to divisible. So as examples
of the above we obtain

ExtnZ(A,Q) = 0 ExtnZ(A,Q/Z) = 0

for all n ≥ 1 and all abelian groups A.

Proposition 1.23. Let P be a projective R-module. Then ExtnR(P,A) = 0 for all R-modules
A and all n ≥ 1.

Proof. We have the somewhat trivial projective resolution of P

0→ P → P → 0

Then we apply the covariant functor HomR(−, A) and drop the first term to obtain the even
more trivial chain complex

0→ HomR(P,A)→ 0

whose ith homology is ExtiR(P,A). Thus Ext0R(P,A) = HomR(P,A) as always, and higher
Ext groups vanish.
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Example 1.24. For R = Z (or any PID), we know that projective is equivalent to free. So
from the above we obtain

ExtnZ(Zk, A) = 0

for all n, k ≥ 1 and all abelian groups A.

Proposition 1.25. Let A,B be abelian groups. Then ExtnZ(A,B) = 0 for all n ≥ 2.

Proof. Recall that for abelian groups, injective is equivalent to divisible, and recall that a
quotient of a divisible group is divisible. We know that Z-mod has enough injectives, so
choose an embedding B ↪→ Q with Q injective/divisible. Then the quotient Q/B is also
divisible, to it is injective. Thus we have an injective resolution

0→ B → I → I/B → 0

Then we apply the covariant functor HomZ(A,−) and drop the B term to obtain a chain
complex whose ith homology is ExtiZ(A,B).

0→ HomZ(A, I)→ HomZ(A, I/B)→ 0

We can’t say very much about Ext0 and Ext1, but we can read off from this that ExtnZ(A,B) =
0 for n ≥ 2.

Proposition 1.26. Let A be a torsion abelian group. Then

ExtiZ(A,Z) =

{
0 i = 0, i ≥ 2

HomZ(A,Q/Z) i = 1

Proof. We have an injective resolution of Z

0→ Z→ Q→ Q/Z→ 0

Then we apply the covariant functor HomZ(A,−) and drop the Z term to obtain a chain
complex whose ith homology is ExtiZ(A,Z).

0→ HomZ(A,Q)→ HomZ(A,Q/Z)→ 0

Because A is torsion and Q is torsion free, HomZ(A,Q) = 0. Thus the 0th homology is zero,
the first homology is HomZ(A,Q/Z), and the higher homology groups vanish.

1.3.2 Extensions and Ext

Theorem 1.27. There is an isomorphism between Ext1R(A,B) and the group of isomorphism
classes of extensions 0→ B → E → A→ 0.

Example 1.28. We know that Ext1Z(Z/pZ,Z/pZ) ∼= Z/pZ by Proposition 1.16. By the
previous theorem, this means that there are exactly p inequivalent extensions

0→ Z/pZ→ E → Z/pZ→ 0

12



We now give concrete descriptions of these p extensions. As for any two groups, there is the
trivial split extension

0→ Z/pZ→ Z/pZ⊕ Z/pZ→ Z/pZ→ 0

where the left map is inclusion into the left factor and the right map is projection onto
the right factor (the choice of which factor does not change the equivalence class of this
extension). For nontrivial extensions, we have the following p− 1 extensions.

0 Z/pZ Z/p2Z Z/pZ→ 0

0 Z/pZ Z/p2Z Z/pZ→ 0

...
...

...

0 Z/pZ Z/p2Z Z/pZ→ 0

p mod p

2p mod p

(p−1)p mod p

It is clear that none of these is equivalent to the trivial extension, since Z/p2Z 6∼= Z/pZ⊕Z/pZ,
so to know that we have found a representative for every equivalence class, it suffices to show
that these p − 1 extensions are all inequivalent. Suppose we have an equivalence as below
with m,n ∈ {1, . . . , p− 1}.

0 Z/pZ Z/p2Z Z/pZ 0

0 Z/pZ Z/p2Z Z/pZ 0

mp

Id

mod p

θ∼= Id

np mod p

Commutativity of the right square gives θ(1) ≡ 1 mod p, so θ(1) = 1 + kp for some k. Then
commutativity of the left square gives

np ≡ θ(mp) ≡ mpθ(1) ≡ mp(1 + kp) ≡ mp+mkp2 ≡ mp mod p2

Since m,n < p, this implies m = n.

Remark 1.29. Dummit and Foote do the same example where they describe the p distinct
extension of Z/pZ by itself, except that they write the nontrivial extensions as

0→ Z/pZ p−→ Z/p2Z n mod p−−−−→ Z/pZ→ 0

where the left map is the inclusion 1 7→ p and the right map is x 7→ nx mod p. As above,
this gives p− 1 inequivalent extensions for n ∈ {1, . . . , p− 1}.
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2 Cohomology of cyclic groups

2.1 Cohomology of finite cyclic group

Proposition 2.1. Let G be a finite cylic group with generator σ and let A be a G-module.
Then

H i(G,A) =


AG i = 0

kerNG/(σ − 1)A i = 1, 3, . . .

AG/NGA i = 2, 4, . . .

Proof. Let NG =
∑

g∈G g be the norm element of G. Consider the following free (and
projective) resolution of Z as a trivial G-module.

· · · Z[G] Z[G] Z[G] Z 0
σ−1 NG σ−1 ε

Now apply (contravariant) HomZ[G](−, A) and drop the Z term to obtain a chain complex
whose ith homology is H i(G,A).

0 HomZ[G](Z[G], A) HomZ[G](Z[G], A) HomZ[G](Z[G], A) · · ·(σ−1)∗ (NG)∗ (σ−1)∗

Now we use the standard isomorphism (for any ring R) that HomR(R,A) ∼= A via φ 7→ φ(1).
Applying this to each term of the previous chain complex, we obtain an isomorphic chain
complex with isomorphic homology.

0 HomZ[G](Z[G], A) HomZ[G](Z[G], A) HomZ[G](Z[G], A) · · ·

0 A A A · · ·

(σ−1)∗

∼=

(NG)∗

∼=

(σ−1)∗

∼=

σ−1 NG σ−1

Then noting that the kernel of σ − 1 is precisely AG, we read off from this bottom chain
complex the cohomology.

H i(G,A) =


AG i = 0

kerNG/(σ − 1)A i = 1, 3, . . .

AG/NGA i = 2, 4, . . .

Proposition 2.2. Let G be a finite cyclic group with generator σ and let A be a G-module.
Then

Ĥ i(G,A) =

{
kerNG/(σ − 1)A i = . . . ,−3,−1, 1, 3, . . .

AG/NGA i = . . .− 2, 0, 2, 4, . . .

Proof. The previous proposition (2.1) already verified this for i ≥ 1. For i = −1, 0, these
are the right Tate cohomology groups essentially by definition of Tate cohomology in degrees
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−1, 0. For i ≤ −2, we just need to compute the homology, which we do using the same
tactics as in Proposition 2.1. We start with the same projective resolution of Z,

· · · Z[G] Z[G] Z[G] Z 0
σ−1 NG σ−1 ε

then apply (covariant) − ⊗Z[G] A and drop the Z term. Similar to before, we have very
convenient isomorphisms.

· · · Z[G]⊗Z[G] A Z[G]⊗Z[G] A Z[G]⊗Z[G] A 0

· · · A A A 0

σ−1⊗IdA

∼=

NG⊗IdA

∼=

σ−1⊗IdA

∼= ∼=

σ−1 NG σ−1

From this, we read off the homology Ĥ i(G,A) = H−i−1(G,A) for i ≤ −2, and it exactly
what we claimed.

2.2 H1(GL2(Fp),F2
p)

Proposition 2.3. Let p be a prime, and consider M = F2
p (viewed as column vectors)

with the standard action from GL2(Fp) (by left matrix multiplication). For any subgroup
G ⊂ GL2(Fp), H1(G,M) has order 1 or order p. If p = 2, then the order is 1.

Proof. Let Gp ⊂ G be a Sylow p-subgroup. Note that since the order of GL2(Fp) is (p2 −
p)(p2 − 1) = p(p− 1)2(p+ 1), any Sylow p-subgroup has order p or 1.

Because pM = 0, H1(G,M) is a p-torsion group. Since Res : H1(G,M) → H1(Gp,M)
is injective on the p-primary component (Corollary 1.8.24 of Sharifi [6]), this says that
Res : H1(G,M)→ H1(Gp,M) is injective.

If Gp = 0, then H1(G,M) = H1(Gp,M) = 0 and there is nothing to prove, so suppose
Gp has order p. Since all p-Sylow subgroups are conjugate, Gp is conjugate in GL2(Fp) to
the cyclic unipotent subgroup U generated by

u =

(
1 1
0 1

)
Then Gp

∼= U so H1(Gp,M) ∼= H1(U,M). So to show that H1(G,M) has order 1 or p, it
suffices to show that H1(U,M) has order 1 or p (since the restriction map embeds H1(G,M)
into H1(Gp,M) ∼= H1(U,M)). Since U is fintie cyclic (of order p), by the computation of
Tate cohomology for finite cyclic groups,

H1(U,M) ∼= kerN/(u− 1)M

where N = 1 + u+ · · ·+ up−1 ∈ Mat2(Fp) is the norm map. For p odd,

N =

p−1∑
k=0

(
1 k
0 1

)
=

(
p p(p−1)

2

0 p

)
=

(
0 0
0 0

)
= 0

15



For p = 2,

N =

(
1 0
0 1

)
+

(
1 1
0 1

)
=

(
0 1
0 0

)
So for p odd, kerN = F2

p, and for p even, kerN = Fp = Fpe1, generated (as a U -module) by

e1 =

(
1
0

)
. The other part we need for H1(U,M) ∼= kerN/(u − 1)M is (u − 1)M , which is

Fpe1. Thus we obtain

H1(U,M) =

{
0 p = 2

Fp p > 2

Remark 2.4. The previous proof says a little bit more than the proposition asserts. It
says that if p is odd and G ⊂ GL2(Fp) is a Sylow p-subgroup (so it has order p), then
H1(G,M) ∼= Fp ∼= Z/pZ.

It also says that if p does not divide the order of G ⊂ GL2(Fp), then H1(G,M) = 0,
since Gp = 0 and H1(Gp,M) = 0. On the other hand, if p does divide the order of G, all
the proof tells us is that H1(G,M) embeds into H1(Gp,M) = Z/pZ, so H1(G,M) may be
zero or Z/pZ, we don’t know for sure. Perhaps other methods exist to sharpen this, but this
proof does not accomplish this.

2.3 Cohomology of infinite cyclic group

Lemma 2.5. Let G be a group and let ε : Z[G]→ Z be the augmentation map,

ε

(∑
g∈G

agg

)
=
∑
g∈G

ag ag ∈ Z

The kernel of ε is equal to the ideal IG ⊂ Z[G] generated by elements g − 1 for g ∈ G.

Proof. It is clear that for g ∈ G, ε(g−1) = 0 so IG ⊂ ker ε. Conversely, if x =
∑
agg ∈ ker ε,

then

0 = ε

(∑
g∈G

agg

)
=
∑
g∈G

ag =⇒
∑
g∈G

agg =
∑
g∈G

ag(g − 1)

so x ∈ IG.

Proposition 2.6. Let G be an infinite cyclic group with generator σ. Then

0→ Z[G]
σ−1−−→ Z[G]

ε−→ Z→ 0

is a free resolution of Z as trivial Z[G]-module. Thus

H i(G,A) =


AG i = 0

A/(σ − 1)A i = 1

0 i ≥ 2

16



Proof. It is clear that ε is surjective. To verify injectivity, suppose x =
∑

g∈G agg =∑
i∈Z aiσ

i ∈ ker(σ − 1). Since σx − x = 0, all the coefficients of x must be the same.
Since x can have only finitely many nonzero coefficients, they must all be zero. Regarding
exactness at the middle term, in the language of the previous lemma, ker ε = IG. Since G is
cyclic, IG is generated by σ − 1, which is to say, IG is the image of σ − 1, so the sequence is
exact.

From this resolution, we apply HomZ[G](−, A) and drop the Z term to obtain a complex
whose homology is H i(G,A). We also have canonical isomorphisms HomZ[G](Z[G], A) ∼= A,
which gives an isomorphic complex whose homology is easier to read off.

0 HomZ[G](Z[G], A) HomZ[G](Z[G], A) 0

0 A A 0

(σ−1)∗

∼= ∼=

σ−1

From the bottom complex, we read off

H i(G,A) =


ker(σ − 1) = AG i = 0

A/(σ − 1)A i = 1

0 i ≥ 2
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3 Brauer groups of cyclic extensions

3.1 Relative Brauer group of cyclic extension

Proposition 3.1. Let L/K be a finite cyclic Galois extension. Then Br(L/K) ∼= K×/NL
K(L×).

Proof. We use the isomorphism Br(L/K) ∼= H2(Gal(L/K), L×). Since Gal(L/K) is finite
cyclic, by the computation of Tate cohomology for finite cyclic groups,

H2(Gal(L/K), L×) ∼= Ĥ0(Gal(L/K), L×) ∼= (L×)Gal(L/K)/NGL
×

By Galois theory, (L×)Gal(L/K) = K×. Also, the group norm NG coincides with the field
norm NL

K ,

NG(α) =

(∑
σ∈G

σ

)
(α) =

∏
σ∈G

σ(α) = NL
K(α)

so
Br(L/K) ∼= K×/NL

K(L×)

3.2 Br(R) and Br(Fq) via cohomology

Proposition 3.2. Br(R) ∼= Z/2Z.

Proof. The separable closure of R is the algebraic closure C, so Br(R) = Br(Rsep/R) =
Br(C/R). Since C/R is finite cyclic (order 2, generated by complex conjugation), by Propo-
sition 3.1,

Br(R) ∼= R×/NC
R(C×)

The norm map in this case is x+ iy 7→ x2 + y2, so the image is R>0. Thus

Br(R) ∼= R×/R>0
∼= Z/2Z〈−1〉

Proposition 3.3. Br(Fq) = 0.

Proof. The absolute Brauer group is the union of all the relative Brauer groups of finite
Galois extensions. Also, Fq has a unique (up to isomorphism) extension of degree n, which
we denote Fqn .

Br(Fq) =
⋃
n≥1

Br(Fqn/Fq)

Thus it suffices to show that Br(Fqn/Fq) = 0. The extension Fqn/Fq is finite cyclic Galois,
so by Proposition 3.1,

Br(Fqn/Fq) ∼= F×q /N
Fqn

Fq
(Fqn)

Using the fact that norm maps are surjective for finite fields, this quotient is zero.
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3.3 Br(R) and Br(Fq) via central simple algebras

Proposition 3.4. Any central division algebra over R is isomorphic to the Hamilton quater-
nions. Consequently, Br(R) = Z/2Z.

Proof. Let D be a central division algebra over R with d2 = dimRD. Then D contains a
maximal subfield K with dimRK = d. Since the only nontrivial finite extension of R is C,
K = C and d = 2, so dimRD = 4. Now consider the R-algebra homomorphisms

C→ D z 7→ z

C→ D z 7→ z

By the Skolem-Noether theorem, these are conjugate, so there exists j ∈ D× such that
jzj−1 = z for all z ∈ C. In particular, jij−1 = −i or we may write this as ji = −ij, so j
does not commute with C, so j is not in C. Now observe that

j2zj−2 = −(−z) = z

so j2 commutes with C. Since j2 ∈ D× is a unit, C(j2) is a field, but there are no nontrivial
finite extensions of C, so j2 ∈ C. Since we have

j2 = j(j2)j−1 = j2

we also get j2 ∈ R. Since j2 ∈ R but j 6∈ R, j2 must not be a positive real, since positive reals
have square roots in R. Thus j2 < 0. Now up to rescaling, we may assume that j2 = −1, by
replacing j with j√

|j2|
. Finally, we claim that 1, i, j, ij is an R-basis of D. Since dimRD = 4,

it suffices to show that they are linearly independent. Suppose there are α, β, γ, δ ∈ R such
that

α + βi+ γj + δij = α + βi+ (γ + δi)j = 0

If one of γ, δ is nonzero, then we may rearrange the above into

j = −α + βi

γ + δi

which implies j ∈ C, which we know to be false (since j does not commute with i). So
γ = δ = 0, which implies α + βi = 0, which implies α = β = 0. Thus 1, i, j, ij are linearly
independent, so they form a basis of D. So D has a presentation

D = 〈1, i, j, ij | i2 = j2 = −1, ij = −ji〉

which is precisely the usual presentation of the Hamilton quaternions, so D is isomorphic to
the Hamilton quaternions.

Since nonzero elements of Br(R) correspond to isomorphism classes of central division
algebras over R, this shows that there is exactly one such isomorphism class, so there is
exactly one nonzero element in Br(R). Thus it must be the group with two elements,
Z/2Z.

Proposition 3.5. Any finite division ring is a field. Consequently, Br(Fq) = 0.
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Proof. Let D be a finite division ring of characteristic p, so D is a central division algebra
over Fq for some q = pn. Let d2 = dimFq D. If d = 1, then D is a field and we are done,
so suppose d > 1. Then D contains a maximal subfield P with dimFq P = d > 1. By the
Skolem-Noether theorem, any two maximal subfields P ⊂ D are conjugate, which is to say,
for any two maximal subfields P, P ′, there exists σ ∈ D× such that

P ′ = σPσ−1

Thus if we fix a maximal subfield P ⊂ D (with dimFq P = d), the orbit of P under conjugation
gives all maximal subfields of D. Since any element of D× is contained in some maximal
subfield of D, it follows that

D =
⋃
σ∈D×

σPσ−1 D× =
⋃
σ∈D×

σP×σ−1

The second equality asserts that the finite group D× is equal to the union of all conjugates
of a given subgroup P×, but by a standard lemma in group theory, this is impossible if P×

is a proper subgroup. So we reach a contradiction, and conclude that d cannot be greater
than 1, so d = 1 and D = Fq is a finite field.

Since any nonzero element of Br(Fq) corresponds to a central division algebra over Fq of
dimension > 1, the fact that there are no such division algebras implies that Br(Fq) = 0.
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4 Zp and Qp

Throughout this section, let p be a prime.

Remark 4.1. Recall that a p-adic integer x ∈ Zp has a unique expansion

x =
∞∑
k=0

akp
k = a0 + a1p+ a2p

2 + · · ·

where 0 ≤ ai ≤ p− 1. It is a unit (is in Z×p ) if and only if a0 6= 0.

Lemma 4.2. The inclusion Z ↪→ Zp has dense image. That is, if x ∈ Zp and n ≥ 1, there
exists α ∈ Z with 0 ≤ α ≤ pn − 1 such that |x− α|p ≤ p−n.

Proof. Using the expansion of above, write x = a0 + a1p + a2p
2 + · · · , then set α = a0 +

a1p + · · · + an−1p
n−1. Then it is clear that 0 ≤ α ≤ pn − 1 and using the nonarchimedean

triangle inequality we get

|x− α|p = |anpn + an+1p
n+1 + · · · |p ≤ max

i≥n
|aipi| = |pn| = p−n

4.1 p-adic units Z×p
Remark 4.3. From the previous unique description via expansions, it is clear that the
following sequence is exact.

0→ pnZp ↪→ Zp → Z/pnZ→ 0

where the right map is the “truncation” map

a0 + a1p+ a2p
2 + · · · 7→ a0 + a1p+ · · ·+ an−1p

n−1

Thus from the first isomorphism theorem we obtain

Zp/pnZp ∼= Z/pnZ

More generally, for m ≤ n we have a truncation map pmZp → Z/pn−mZ with kernel pnZp
fitting into an exact sequence

0→ pnZp → pmZp → Z/pn−mZ→ 0

inducing an isomorphism
pmZp/pnZp ∼= Z/pn−mZ

The first version was just the case m = 0.

21



Definition 4.4. Let U0 = Z×p and for n ≥ 1, set

Un = 1 + pnZp =
{

1 + anp
n + an+1p

n+1 + · · · ∈ Z×p
}

Note that Un is a subgroup of Z×p , and that there is a filtration

Z×p ⊃ 1 + pZp ⊃ 1 + p2Zp ⊃ · · · U0 ⊃ U1 ⊃ U2 ⊃ · · ·

Lemma 4.5. There are exact sequences

1 1 + pZp Z×p (Z/pZ)× 1

1 1 + pnZp Z×p (Z/pnZ)× 1

1 1 + pn+1Zp 1 + pnZp Z/pZ 1

mod p

mod pn

1+pnx 7→x mod p

2 for n ≥ 1 which induce isomorphisms

U0/U1
∼= (Z/pZ)× U0/Un ∼= (Z/pnZ)× Un/Un+1

∼= Z/pZ

Proof. Exactness is obvious by inspection, and the isomorphisms are immediate from the
first isomorphism theorem.

Definition 4.6. For x ∈ Qp, the p-adic exponential function is

exp(x) =
∞∑
n=0

xn

n!

and the p-adic logarithm is

log(1 + x) =
∞∑
n=1

(−1)n+1x
n

n

Note that at this point, these are both formal power series, but the next lemma determines
their respective domains of convergence.

Lemma 4.7. Let f(x) =
∑∞

n=0 anx
n ∈ Qp[[x]]. Define

rf =
(
lim sup |an|1/np

)−1
Then f(x) converges for |x|p < rf and diverges for |x|p > rf .

Proof. Proposition 4.3.1 of Gouvea [3]. Gouvea also gives a criterion for convergence on the
“boundary” |x|p = rf which is not included here.

Lemma 4.8. The p-adic logarithm and exponential have the following properties.

2The first sequence is redudant, as it is a special case of the second, but we include it anyway.

22



1. For f(x) = log(1 + x), rf = 1, so the domain of log(1 + x) is pZp and the domain of
log(x) is 1 + pZp.

2. For f(x) = exp(x), rf = p−1/(p−1), so the domain of exp(x) is{
pZp p ≥ 3

4Z2 p = 2

3. Whenever there is convergence, the following identities hold.

log(ab) = log a+ log b

exp(a+ b) = (exp a)(exp b)

exp log a = a

log exp a = a

Proof. Section 4.5 of Gouvea [3]. In particular, Lemma 4.5.1, Proposition 4.5.3, Lemma
4.5.5, Proposition 4.5.7, Proposition 4.5.8

Proposition 4.9. If p ≥ 3, then we have isomorphisms

Zp ∼= pZp 1 + pZp = U1

exp

∼=
log

In the case p = 2 we have isomorphisms

Z2
∼= 4Z2 1 + 4Z2 = U2

exp

∼=
log

Proof. The isomorphisms given by exp and log follow from the previous lemma 4.8. The
isomorphism Zp ∼= pZp is given by x 7→ px, and similarly Z2

∼= 4Z2 via x 7→ 4x. See
Proposition 4.5.9 of Gouvea [3] for more on this.

Remark 4.10. Let p be odd. Under the isomorphism log : 1 + pZp → pZp, the subgroup
Un = 1 + pnZp ⊂ 1 + pZp on the left side has image pnZp on the right side, so the p-adic
logarithm gives an isomorphism

Un = 1 + pnZp ∼= pnZp

Proposition 4.11 (Structure of Z×p ).

Z×p ∼=

{
U1 × (Z/pZ)× ∼= Zp × (Z/pZ)× p ≥ 3

U2 × (Z/4Z)× ∼= Z2 × {±1} p = 2

Proof. In light of the isomorphisms from Proposition 4.9, the first and second exact sequences
of Lemma 4.5 give exact sequences below.

0 Zp ∼= U1 Z×p (Z/pZ)× 0 p ≥ 3

0 Z2
∼= U2 Z×2 (Z/4Z)× ∼= {±1} 0
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We claim that these are split exact. For the p = 2 sequence, simply use the embedding

{±1} ↪→ Z× ↪→ Z×2

Splitting of the other sequence is more involved, so we omit some details. Basically, it suffices
to find (p− 1)st roots of unity in Z×p , since (Z/pZ)× is cyclic of order p− 1.

Consider f(x) = xp−1 − 1 ∈ Z[x] ⊂ Zp[x]. Over Fp, this splits completely into p − 1
distinct linear factors, and the derivative is f ′(x) = (p− 1)xp−2 6= 0, so by Hensel’s lemma,
all of the simple roots lift to roots in Zp. Thus Zp contains all (p− 1)st roots of unity.

See Corollary 4.5.10 of Gouvea [3] for some more details. Once the sequences split, we
obtain exactly the claimed isomorphisms.

Corollary 4.12 (Structure of Q×p ).

Q×p ∼= Z× Z×p ∼=

{
Z× Zp × (Z/pZ)× p ≥ 3

Z× Z2 × (Z/4Z)× p = 2

Proof. Any element of Q×p can be written uniquely as pnu where u ∈ Z×p , so we get an
isomorphism

Q×p → Z× Z×p pnu 7→ (n, u)

The rest is immediate from the structure of Z×p .

4.2 Completions of Q are non-isomorphic

Remark 4.13. From the structure of Q×p given in Corollary 4.12, and the fact that Z and Zp
are torsion-free, the torsion subgroup of Q2 is (Z/4Z)× and for p ≥ 3 the torsion subgroup
of Q×p is (Z/pZ)×. That is to say, the only roots of unity in Q2 are ±1, and for p ≥ 3 the
only roots of unity in Q×p are (p− 1)st roots of unity.

Proposition 4.14. The fields R,Q2,Q3,Q5, . . . are all pairwise non-isomorphic (as abstract
fields).

Proof. According to the following table comparing the torsion subgroup of the multiplicative
group, none of R,Q2,Q3 is isomorphic to Q5,Q5, . . . and none of Q5,Q7, . . . are isomorphic
to each other.

K Torsion in K×

R Z/2Z ∼= {±1}
Q2 Z/2Z ∼= {±1}
Q3 Z/2Z ∼= {±1}
Qp, p ≥ 5 Z/(p− 1)Z

So it remains to check that R,Q2,Q3 are pairwise non-isomorphic. For this, we consider the
invariant K×/K×2.

K K×/K×2 |K×/K×2|
R R/R>0

∼= Z/2Z 2
Q2 (Z× Z2 × Z/2Z)/2 ∼= (Z/2Z)3 8
Q3 (Z× Z3 × Z/2Z)/2 ∼= (Z/2Z)2 4
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Note that Z3/2 = 0 because 2 is a unit in Z3. Since these are all distinct, none of these are
isomorphic either.

Remark 4.15. Let p be an odd prime. One interesting consequence of |Q×p /Q×2p | = 4 is
that Qp has exactly three quadratic field extensions (in a fixed algebraic closure), because
any quadratice field extension is formed by adjoining a square root of a non-square.

4.3 The group of units (Z/pnZ)× is cyclic

Proposition 4.16. Let p be an odd3 prime and n ∈ Z≥1. The group of units (Z/pnZ)× is
cyclic.

Proof. By Lemma 4.5,
(Z/pnZ)× ∼= Z×p /Un = Z×p /(1 + pnZp)

Using Proposition 4.11,
Z×p ∼= U1 × (Z/pZ)×

Since Un ⊂ U1, in the quotient Z×p /Un ∼= (U1 × (Z/pZ)×)/Un the Un lives entirely in the U1

component, so
Z×p /Un ∼= (U1 × (Z/pZ)×)/Un ∼= (U1/Un)× (Z/pZ)×

By Remark 4.10, Un ∼= pnZp, so

U1/Un =
1 + pZp
1 + pnZp

∼=
pZp
pnZp

∼= Z/pn−1Z

The final isomorphism comes from Remark 4.3. Putting this together, we obtain

(Z/pnZ)× ∼= U1/Un × (Z/pZ)× ∼= Z/pn−1Z× (Z/pZ)×

Since (Z/pZ)× is cyclic of order p− 1, the product on the right is a product of cyclic groups
of relatively prime orders, so it is cyclic.

3This does fail for p = 2 for at least some values of n. As a counterexample, (Z/8Z)× is order four, but
not cyclic, since 32 ≡ 52 ≡ 72 ≡ 1 mod 8.
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5 Inflation-restriction sequence

5.1 Statement of Inflation-restriction sequence, proof of exactness
for first 3 terms

Proposition 5.1. Let G be a group, let N ⊂ G be a normal subgroup, and let A be a
G-module. Then the following sequence is exact.

0 H1(G/N,AN) H1(G,A) H1(N,A) H2(G/N,AN) H2(G,A)Inf Res Inf

Remark 5.2. An incomplete proof of the above is given in Theorem 4.1.20 of Rosenberg [5].
A confusing proof is given in Proposition 3.3.16 of Gille & Szamuely [2]. A proof utilizing
spectral sequences is given in Proposition 6.8.2 and Remark 6.8.3 of Weibel [7]. See below
for a proof of exactness for just the first three terms, following Theorem 1.8.10 of Sharifi [6].

Remark 5.3. We recall the description of Inf in terms of cocycles. Let G be a group with a
normal subgroup N and let A be a G-module. For a cocycle φ : G/N → AN and for g ∈ G,
we have a cocycle in Z1(G,A) described by

Ĩnf(φ) : G→ A Ĩnf(φ)(g) = φ(g)

where g = gN is the image of g in G/N . That is to say, there is a map

Ĩnf : Z1(G,A)→ Z1(G/N,AN) φ 7→ (g 7→ φ(g))

In these terms, Inf[φ] = [Ĩnf(φ)]. The previous equality is represented by the following
commutative square, where the vertical arrows are quotient maps.

Z1(G/N,AN) Z1(G,A)

H1(G/N,AN) H1(G,A)

Ĩnf

Inf

Remark 5.4. We recall the description of Res in terms of cocycles. Let G be a group with
a subgroup N and let A be a G-module. The literal function restriction map

Z1(G,A)→ Z1(N,A) ψ 7→ ψ|H

induces Res, which is to say Res[ψ] = [ψ|N ]. We represent this with the following commuta-
tive square, where vertical arrows are quotient maps.

Z1(G,A) Z1(N,A)

H1(G,A) H1(N,A)

ψ 7→ψ|N

Res
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Proposition 5.5. Let G be a group and N ⊂ G a normal subgroup, and let A be a G-module.
Then the following sequence is exact.

0 H1(G/N,AN) H1(G,A) H1(N,A)Inf Res

Proof. First, we show Inf is injective (which gives exactness at the first term). Let [φ] ∈
H1(G/N,AN) with representative cocycle φ such that [φ] ∈ ker Inf, so Inf[φ] = [Ĩnf(φ)] =

0 ∈ H1(G,A). That is, Ĩnf(φ) is a coboundary, which in degree one means that there exists
a ∈ A so that for all g ∈ G,

Ĩnf(φ)(g) = φ(g) = (g − 1)a

In particular, for n ∈ N ,
0 = φ(n) = (n− 1)a

so a ∈ AN . Then reusing the previous equality, we have a ∈ AN such that

φ(g) = (g − 1)a = (g − 1)a

which is exactly the condition for φ to be a coboundary. Thus [φ] = 0, and Inf is injective.
Now we need exactness at H1(G,A). We can easily get im Inf ⊂ ker Res by showing that

Res ◦ Inf = 0. Let [φ] ∈ H1(G/N,AN) with representative cocycle φ. Then

Res ◦ Inf[φ] = Res[Ĩnf(φ)] = [Ĩnf(φ)|N ]

But just as a cocycle, Ĩnf(φ)|N is zero, because for n ∈ N ,

Ĩnf(φ)|N(n) = φ(n) = φ(1) = 0

4 Thus Res ◦ Inf = 0. Now we need to show ker Res ⊂ im Inf. Let [α] ∈ ker Res ⊂ H1(G,A),
with representative cocycle α ∈ Z1(G,A). Since Res[α] = [α|N ] = 0, α|N is a coboundary,
so there exists a ∈ A such that for all n ∈ N , α(n) = (n− 1)a. Define

β : G→ A β(g) = α(g)− (g − 1)a

This is defined so that for n ∈ N ,

β(n) = α(n)− (n− 1)a = 0

Note that β ∈ Z1(G,A), since it differs from the cocylce α by a coboundary (g− 1)a, which
also means [β] = [α] ∈ H1(G,A). Also, for g ∈ G, n ∈ N ,

β(gn) = gβ(n) + β(g) = β(g)

4Note that a cocycle vanishes on the identity. This follows from the cocycle relation: φ(x) = φ(1x) =
1φ(x) + φ(1) =⇒ φ(1) = 0.
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so β factors through G/N , meaning that there is a map β making the following diagram
commute, which is to say, β(g) = β(g).

G N

G/N

β

β

Also, for g ∈ G, n ∈ N ,

nβ(g) = nβ(g) + β(n) = β(ng)

= β(gg−1ng) = gβ(g−1ng) + β(g) = β(g)

the last equality uses normality of N to say that g−1ng ∈ N . Thus the image of β lands in
AN , so β ∈ H1(G/N,AN). Finally, it is immediate that Ĩnf(β) = β, so

Inf[ β ] = [Ĩnf(β)] = [β] = [α]

proving ker Res ⊂ im Inf.

5.2 H1(G,M) for G profinite, M discrete, torsion free, finitely gen-
erated

Remark 5.6. Let G be a profinite group. Recall that a subgroup is open if and only if it is
closed and of finite idex.

{open subgroups} = {closed subgroups of finite index}

Additionally, a closed subset of a compact set is compact, and since G is Hausdorff, a compact
set is closed. Thus

{closed subgroups} = {compact subgroups}

{open subgroups} = {closed subgroups of finite index} = {compact subgroups of finite index}

Proposition 5.7. Let G be a profinite group and M a discrete G-module which is torsion
free and finitely generated as an abelian group. Then H1(G,M) is finite.

Proof. Let m1, . . . ,mn be a set of generators for M . Set Gi = stab(mi). Since M is a discrete
module, Gi is open in G. Then set

GM =
n⋂
i=1

Gi

and note that GM is also open, since it is a finite intersection of open sets. GM acts trivially
on generators of M , so it acts trivially on all of M . Consider the conjugation action of G on
its set of subgroups.

G× {subgroups H ⊂ G} → {subgroups H ⊂ G} g ·H = gHg−1
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For the subgroup GM , the stabilizer of this action is the normalizer stab(GM) = NG(GM),
and the orbit is the set of conjugate subgroups. Because GM is open, it has finite index,
and because GM ⊂ NG(GM), the normalizer also has finite index. By the orbit-stabilizer
theorem, the size of the orbit is equal to the index of the stabilizer, so the size of the orbit
is finite, which is to say, GM has finitely many conjugate subgroups. Thus we have a finite
intersection

N =
⋂
g∈G

gGMg
−1

so N is a finite index open subgroup. It is clear that N is normal, and that N acts trivially on
M , so MN = M . Since N acts trivially on M , the decomposition M ∼= ⊕Z is a decomposition
of N -modules, so

H1(N,M) = H1(N,⊕Z) ∼=
⊕

H1(N,Z) ∼= Homcts(N,Z)

Since N is an open subgroup of a finite index in a profinite group, it is also compact, so the
image of N under a continuous homomorphism N → Z is a compact subgroup of Z, which
is to say, it is trivial. Thus Hom(N,Z) = 0, so H1(N,M) = 0. Now consider the first three
nonzero terms of the Inflation-Restriction sequence.

0 H1(G/N,MN) H1(G,M) H1(N,M) = 0

By exactness, H1(G,M) ∼= H1(G/N,MN) = H1(G/N,M). Recall that G/N is finite, so
from the restriction-corestriction sequence, we know that H1(G/N,M) is torsion of exponent
dividing |G/N |. Since M is finitely generated, H1(G/N,M) is finitely generated. Thus
H1(G/N,M) is a torsion and finitely generated abelian group, so it is finite. Thus H1(G,M)
is also finite.
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6 Merkurjev-Suslin theorem

6.1 Construction of Galois symbol

Review check. Outline the process of constructing the Galois symbol map hnK,m : KM
n (K)→

Hn(GK , µ
⊗n
m , assuming charK is coprime to m.

Remark 6.1. Let K be a field and let m be a positive integer such that m is coprime to the
characteristic of K, so that the group of mth roots of unity µm lives in a separable closure
Ksep. Let GK = Gal(Ksep/K) be the absolute Galois group of K. Recall from Kummer
theory that in this situation, there is an isomorphism

K×/K×m ∼= H1(GK , µm)

We may also view this as a surjection K× → H1(GK , µm) with kernel K×m.

0→ K×m ↪→ K× → H1(GK , µm)→ 0

The isomorphism may be described explicitly in terms of elements as follows. For a ∈ K×,
the class of a ∈ K×/K×m corresponds to the Kummer cocycle χa ∈ H1(GK , µm), where

χa : GK → µm σ 7→ σ(α)

α

where α is any mth root of a. For details behind this, such as why χa is well defined, or why
it is a cocycle, see Proposition 4.3.6 of Gille & Szamuley [2] or Proposition 2.5.8 of Sharifi
[6].

Definition 6.2. Let R be a ring and M be an R-module. We use the notation M⊗n for the
n-fold tensor product M ⊗R · · · ⊗RM with n factors. (In what follows, we will always have
R = Z, but this notation makes sense more generally.)

Definition 6.3. Let K,m,Ksep, µm, GK be as above. For n ∈ Z≥2, Consider the cup product
(all tensor products over Z)

H1(GK , µm)⊗n
∪−→ Hn(GK , µ

⊗n
m )

Combining this with the surjections K× → H1(GK , µm), we obtain a homomorphism

∂n : (K×)⊗n → Hn(GK , µ
⊗n
m )

Remark 6.4. Recall the general fact that for two positive integers a, b,

Z/aZ⊗Z Z/bZ ∼= Z/ gcd(a, b)Z

Iterating this, we obtain

µ⊗nm = µm ⊗ · · · ⊗ µm ∼= Z/mZ⊗ · · · ⊗ Z/mZ ∼= Z/mZ ∼= µm

So for the target of ∂n we have Hn(GK , µ
⊗n
m ) ∼= Hn(GK , µm). Despite this, we still often

write the tensor product.
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Proposition 6.5. Let ∂n be the map defined above. If a1, . . . , an ∈ K× such that ai +aj = 1
for some pair i 6= j, then ∂n(a1 ⊗ · · · ⊗ an) = 0.

Proof. Lemma 4.6.2 and Proposition 4.6.1 in Gille & Szamuley [2]. Maybe I’ll include this
later, maybe it isn’t important to know the details here.

Definition 6.6. Let K, ∂n, etc. be as above. The nth Milnor K-group KM
n (K) is the

quotient of (K×)⊗n by the ideal generated by elements a1⊗ · · · ⊗ an for which some pair i, j
we have ai + aj = 1. By definition, ∂n vanishes on this ideal, and induces a homomorphism

hnK,m : KM
n (K)→ Hn(GK , µ

⊗n
m )

0 ker (K×)⊗n KM
n (K) 0

H2(GK , µ
⊗n
m )

∂n

{...}

hnK,m

The class of a1 ⊗ · · · ⊗ an ∈ (K×)⊗n in the quotient KM
n (K) is denoted by {a1, . . . , an} and

is called a symbol. The map hnK,m is the Galois symbol map.

6.2 Statement of Merkurjev-Suslin theorem in terms of cyclic al-
gebras

Review check. State the Merkurjev-Suslin theorem for a field K containing a primitive
mth root of unity in terms of Br(K) and cyclic algebras.

Definition 6.7. Let K be a field containing a primitive mth root of unity ω. For a, b ∈ K×,
the cyclic algebra (a, b)ω is given by the presentation

〈x, y | xm = a, ym = b, xy = ωyx〉

Note that dimK(a, b)ω = m2, with a K-basis given by products xiyj for 0 ≤ i, j ≤ m− 1.

Theorem 6.8 (Merkerjev-Suslin, Theorem 2.5.7 on page 41 of Gille & Szamuely [2]). Let
K be a field containing a primitive mth root of unity ω. The a central simple K-algebra A
whose class has order dividing m in Br(K) is Brauer equivalent to a tensor product of cyclic
algebras.

[A] = (a1, b1)ω ⊗K · · · ⊗K (ai, bi)ω

That is, the m-torsion subgroup m Br(K) ⊂ Br(K) is generated by cyclic algebras.

Remark 6.9. Every field has a primitive square root of unity (namely −1), so the case
m = 2 says that the 2-torsion of Br(K) for any field K is generated by quaternion algebras.
(This is pointed out in Theorem 1.5.8 of Gille & Szamuely [2].)
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6.3 Statement of Merkurjev-Suslin theorem in terms of Galois
symbol

Review check. State the Merkurjev-Suslin theorem in general for any field K, in terms of
the Galois symbol h2K,m : KM

2 (K)→ H2(GK , µ
⊗2
m ).

Theorem 6.10 (Merkurjev-Suslin theorem, Theorem 4.6.6 on page 132 of Gille & Szamuely
[2]). Let K be a field and m a positive integer which is invertible in K. For n = 2, the Galois
symbol map is a surjection

h2K,m : KM
2 (K) � H2(GK , µ

⊗2
m )

with kernel mK2(M), so it induces an isomorphism

KM
2 (K)/m ∼= H2(GK , µ

⊗2
m )

Remark 6.11. The previous theorem is a special case of the much more general Voevodsky-
Rost theorem (published 2000), formerly known as the Bloch-Kato conjecture. It says that
hnK,m is an isomorphism for all n ≥ 0, not just n = 2. Note that the case n = 0 is trivial,
and n = 1 is just the isomorphism

K1(K)/m = K×/K×m ∼= H1(GK , µm)

of Kummer theory. The case n = 2 (above) was proven by Merkurjev-Suslin in 1982.

Remark 6.12. Let K be a field and let m be a positive integer which is coprime to the
characteristic of K. Let GK = Gal(Ksep/K) be the absolute Galois group. From remark
6.4, we have an isomorphism

H2(GK , µ
⊗2
m ) ∼= H2(GK , µm)

From Kummer theory, we have an isomorphism

H2(GK , µm) ∼= m Br(K)

Combining these with the isomorphism of the Merkurjev-Suslin theorem, we obtain

KM
2 (K)/m ∼= m Br(K)

Remark 6.13. Here is a large diagram attempting to summarize the various objects and
maps involved in the above statements. The map δ is one of the isomorphisms from Kummer
theory, coming from the connecting homomorphism of a LES.

The vertical sequence involving KM
2 (K) is exact by definition of KM

2 (K). The first
horizontal row is exact by definition of kernel. The inclusion of 〈u ⊗ (1 − u)〉 into ker ∂2 is
the content of Proposition 6.5. Exactness of the second horizontal row is the content of the
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Merkurjev-Suslin theorem.

0

〈u⊗ (1− u) | u ∈ K×〉

0 ker ∂2 K× ⊗K× H1(GK , µm)⊗H1(GK , µm)

0 mKM
2 (K) KM

2 (K) H2(GK , µ
⊗2
m ) 0

0 H2(GK , µm)

m Br(K)

∂2

∪
h2K,m

∼=

∼= Kummer theory

6.4 Connection between the two versions

Definition 6.14. Let L/K be a cyclic Galois extension of order m, and fix an isomorphism
χ : Gal(L/K)→ Z/mZ. Let b ∈ K×, and let σ = χ−1(1). The cyclic algebra (χ, b) is the
algebra with the following presentation. It is generated as an L-algebra by L and an element
y, satisfying

ym = b σ(λ) = y−1λy, ∀λ ∈ L

Remark 6.15. If K contains a primitive mth root of unity ω, then there is an isomorphism
(χ, b) ∼= (a, b)ω

5 which justifies the double use of the term “cyclic algebra.” See Corollary
2.5.5 of Gille & Szamuely [2].

Proposition 6.16. Let K be a field, fix separable closure Ksep, and let GK = Gal(Ksep/K).
Let L/K be a cyclic Galois extension of degree m contained in Ksep, and let G = Gal(L/K).
Fix an isomorphism

χ : G
∼=−→ Z/mZ

Then define
χ̃ : GK → Z/mZ σ 7→ χ(σ|L)

Let δ : H1(GK ,Z/mZ)→ H2(GK ,Z) be the coboundary map of the LES associated to

0→ Z m−→ Z→ Z/mZ→ 0

Then consider the cup product map

H2(GK ,Z)⊗H0(GK , K
sep×)

∪−→ H2(GK , K
sep×)

5There are details about what a anc χ should be to make this work, but we omit these.
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Fix b ∈ K×. Under the isomorphism

H2(GK , K
sep×) ∼= Br(K)

the element δ(χ̃) ∪ b correpends to the Brauer class of the cyclic algebra (χ, b).

Proof. Proposition 4.7.3 of Gille & Szamuley [2].

Proposition 6.17. Let K be a field and let m be a positive integer which is coprime to the
characteristic of K, and suppose K contains a primitive mth root of unity ω. Let a, b ∈ K×.
Under the isomorphism

KM
2 (K)/m ∼= m Br(K)

of remark 6.12, the element {a, b} corresponds to the Brauer class of the cyclic algebra (a, b)ω.
That is, hnK,m {a, b} is Brauer equivalent to (a, b)ω.

Proof. Proposition 4.7.1 of Gille & Szamuely [2].

Remark 6.18. The tensor product K× ⊗ K× is generated by simple tensors a ⊗ b, so
the quotient KM

2 (K) is generated by the images of these, that is, KM
2 (K) is generated by

symbols {a, b}. Thus the previous proposition says that m Br(K) is generated by cyclic
algebras (a, b)ω. That is to say, the Galois symbol version of Merkurjev-Suslin 6.10 implies
the cyclic algebra version of Merkurjev-Suslin 6.8.
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7 K2 of a field

Theorem 7.1 (Matsumoto). Let K be a field. K2(K) is generated by symbols {u, v} for
u, v ∈ K× subject to the relations

{uv, w} = {u,w} {v, w}
{u, vw} = {u, v} {u,w}

{u, 1− u} = 1

for u, v, w ∈ K×. Note that the last relation only makes sense for u 6= 1.

Remark 7.2. If we write K2(K) additively instead of multiplicatively, the previous relations
become

{uv, w} = {u,w}+ {v, w}
{u, vw} = {u, v}+ {u,w}

{u, 1− u} = 0

Lemma 7.3. Symbols satsify the relations

{αm1 , α2, . . . , αn} = {α1, . . . , αn}m for all m ∈ Z
{α1, . . . , αn} = 1 if αi = 1 for some i

Proof. The first is an immediate consequence of multiplicativity. The second is a consequence
of the first, as

{. . . , 1, . . .} =
{
. . . , xx−1, . . . ,

}
= {. . . , x, . . .}

{
. . . , x−1, . . .

}
= {. . . , x, . . .} {. . . , x, . . .}−1 = 1

7.1 K2 of a finite field is trivial

Proposition 7.4. Let Fq be the finite field with q elements.

1. If q is odd, there exists u ∈ F×q such that u and 1− u are both not squares.

2. If α is a generator of F×q , then {α, α} is trivial.

3. For any u, v ∈ F×q , {u, v} is trivial.

4. K2(Fq) is trivial.

Proof. (1) Note that F×q is cyclic of order q − 1. Let α be a generator. Since q − 1 is
even, half of the elements of F×q are squares (1, α2, α4, . . . , αq−3) and half are not squares
(α, α3, . . . , αq−2). Consider the bijection

Fq → Fq u 7→ 1− u
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This maps 0 to 1 and 1 to 0, so we have a bijection

Fq \ {0, 1} → Fq \ {0, 1} u 7→ 1− u

Suppose there is no u such that u and 1−u are both not squares. Then under this bijection,
all of the q−1

2
non-squares get mapped to squares. But one of the squares in F×q is 1, so there

are only q−1
2
− 1 squares in Fq \ {0, 1}, so this is impossible. Thus there does exist u ∈ F×p

such that u, 1− u are both not squares.
(2) Let α be a generator of F×q . Note that since the symbol is anti-commutative,

{α, α}2 = 1

Also note that
{α, α}q−1 =

{
αq−1, α

}
= {1, α} = 1

If q is even (so q − 1) is odd, this says that {α, α} to an odd and even power are trivial, so
it must be trivial. If q is odd, by (1) we can choose u ∈ F×q such that u, 1− u are both not
squares, so u = αi, 1− u = αj with i, j odd. Then

1 = {u, 1− u} =
{
αi, αj

}
= {α, α}ij

so once again {α, α} to an odd power (namely ij) is trivial. Since it also squares to 1, it is
trivial.

(3) Let u, v ∈ F×q . Then write them as powers of a generator u = αi, v = αj. Then by
the symbol relations,

{uv} =
{
αi, αj

}
= {α, α}ij

which is trivial by (2).
(4) This is immediate from (3) and the fact that symbols generate K2(K) for any field

K.

7.2 K2 of algebraically closed field is uniquely divisible

Review check. Show that if K is an algebraically closed field, then KM
n (K) is uniquely

divisible.

Proposition 7.5. Let F be a field and m ∈ Z≥1 such that F× = F×m, and also suppose that
either charF = m or the group of mth roots of unity µm ⊂ F sep is contained in F . Then
KM
n F is uniquely m-divisible.

Proof. Define

fm :
n∏
i=1

F× → KM
n F (α1, . . . , αn) 7→ {β1, α2, . . . , αn}

where β1 ∈ F× satisfies βm1 = α1. To verify that this is well defined, suppose γ1 ∈ F× is also
an mth root of α1, γ

m
1 = α1. Then(

β1γ
−1
1

)m
= βm1 γ

−m
1 = α1α

−1
1 = 1
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so β1γ
−1
1 = ζ is an mth root of unity. Now choose β2 ∈ F× so that α2 = βm2 . Then using

Lemma 7.3 a few times,

{β1, α2, . . . , αn} = {γ1ζ, α2, . . . , αn}
= {γ1, α2, . . . , αn} {ζ, α2, . . . , αn}
= {γ1, α2, . . . , αn} {ζ, βm2 , . . . , αn}
= {γ1, α2, . . . , αn} {ζ, β2, . . . , αn}m

= {γ1, α2, . . . , αn} {ζm = 1, β2, . . . , αn}
= {γ1, α2, . . . , αn}

Thus fm is well defined. Now we claim that fm is an n-symbolic map. It is clear that fm is
multiplicative with respect to the arguments α2, . . . , αn. It is also multiplicative with respect
to the 1st argument, since if βm1 = α1, (β

′
1)
m = α′1, then (β1β

′
1)
m = α1α

′
1 and so

fm(α1α
′
1, α2, . . . , αn) = {β1β′1, . . . , αn}

= {β1, . . . , αn} {β′1, . . . , αn}
= fm(α1, . . . , αn)fm(α′1, . . . , αn)

If αi + αj = 1 for some i 6= j, and i, j 6= 1, then it is clear from the definition of f that
fm(α1, . . . , αn) = 1. If α1 + αj = 1 for some j 6= 1, choose β1 so that βm1 = α1, and then
we need to consider the cases (1) charF = m and (2) µm ⊂ F separately. In case (1) where
charF = m, we get

αj = 1− α1 = 1− βm1 = (1− β1)m

hence

fm(α1, . . . , αj, . . .) = {β1, . . . , (1− β1)m, . . .} = {β1, . . . , 1− β1, . . .}m = 1

since β1 + (1− β1) = 1. So in case (1), fm has the Steinberg property. In case (2), let ζ ∈ F
be a primitive mth root of unity. Then

αj = 1− α1 = 1− βm1 =
m∏
k=1

(1− ζkβ1)

Note that

1 =
{
ζkβ1, . . . , 1− ζkβ1, . . .

}
=
{
ζk, . . . , 1− ζkβ1, . . .

}{
β1, . . . , 1− ζkβ1, . . .

}
(7.1)

=⇒
{
β1, . . . , 1− ζkβ1, . . .

}
=
{
ζk, . . . , 1− ζkβ1, . . .

}−1
(7.2)

Then using equation 7.2

fm(α1, . . . , αj, . . .) =

{
β1, . . . ,

∏
k

(1− ζkβ1), . . .

}
=
∏
k

{
β1, . . . , 1− ζkβ1, . . .

}
=
∏
k

{
ζk, . . . , 1− ζkβ1, . . .

}−1
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Now choose δk so that δmk = 1− ζkβ1. Then we continue our equalities.

fm(α1, . . . , αj, . . .) =
∏
k

{
ζk, . . . , δmk , . . .

}−1
=
∏
k

{
ζk, . . . , δk, . . . ,

}−m
=
∏
k

{
(ζk)m, . . . , δk, . . .

}−1
=
∏
k

{1, . . . , δk, . . . , }−1 =
∏
k

1 = 1

So in case (2), fm has the Steinberg property. Hence in either case, fm is an n-symbolic
map, and induces the group homomorphism

f̃m : KM
n F → KM

n F {α1, . . . , αn} 7→ {β1, . . . , αn}

where βm1 = α1, which is inverse to m-power-map, since

(f̃m ◦m) {α1, . . . , αn} = f̃m {α1, . . . , αn}m = f̃m {αm1 , . . . , αn} = {α1, . . . , αn}

Thus KM
n F is uniquely m-divisible.

Corollary 7.6. Let F be an algebraically closed field. Then KM
n F is uniquely divisible.

Proof. Since F is algebraically closed, it contains mth roots of unity for all m ≥ 1. Hence
by Proposition 7.5, is uniquely m-divisible for all m ≥ 1, so it is uniquely divisible.
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8 Algebraic number theory

8.1 Number fields

8.1.1 Galois, totally real, totally imaginary

Proposition 8.1. Let K be a number field with K/Q Galois. Then K is totally real or
totally imaginary.

Proof. Suppose K is not totally imaginary, so there is an embeddings K ↪→ R. Let K̃ denote
the image of K in R. Since K̃/Q is Galois, any embedding K̃ ↪→ C which fixes Q induces

an automorphism of K̃, which is to say, the image is K̃. Any embeddings K ↪→ C factors as
an isomorphism K ∼= K̃ composed with an embedding K̃ ↪→ C. So any embeddings K ↪→ C
(which necessarily fixes Q) has image K̃ ⊂ R.

8.1.2 A criterion for roots of unity

Definition 8.2. An algebraic integer is an element α of the algebraic closure of Q whose
monic minimal polynomial over Q has integer coefficients. The degree of α is the degree of
the minimal polynomial, or equivalently, the degree of the field extension Q(α)/Q.

Proposition 8.3 (Milne [4] Proposition 5.5). Let m,M ∈ Z≥1. The set of algebraic integers
α such that

1. degα ≤ m

2. |α′| < M for all conjugates α′ of α

is finite. 6

Proof. The first condition says that α is a root of a monic irreducible polynomial f ∈ Z[x]
with deg f ≤ m. The conjugates α′ of α are precisely the other roots of f (in Qalg), and
the coefficients of f can all be expressed in terms of these roots. Thus all coefficients of f
have absolute value bounded by some linear scaling of M . Thus there are only finitely many
possible values for the finitely many coefficients, so there are finitely many polynomials of
which α could be a root, and these polynomials each have finitely many roots. So there are
only finitely many such α’s.

Proposition 8.4. Let α be an algebraic integer such that for all embeddings σ : Q(α) ↪→ C,
|σ(α)| = 1. Then α is a root of unity. 7

Proof. Let f(x) ∈ Z[x] be the minimal polynomial of α and let d = deg f = degα. Let
α = α1, . . . , αd be the roots of f in C, so these are the possible values of σ(α) for embeddings
σ : Q→ C, so by hypothesis, |αi| = 1.

f(x) =
d∏
i=1

(x− αi)

6Here absolute value means the extended archimedean absolute value, which is to say, the restriction of
complex norm.

7As in the previous proposition, by absolute value we mean complex norm.
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Now we note that for any n, αn is a root of

gn(x) =
d∏
i=1

(x− αni )

and we also note that gn(x) ∈ Z[x]. Thus αn has degree ≤ d. The conjugates of αn are
αn1 , . . . , α

n
d which by hypothesis have absolute value (complex norm) 1.

|αni | = |αi|n = 1n = 1

Thus the set {α1, α2, α3, . . .} is contained in the set of all algebraic inegers β such that
deg β ≤ d and |β′| < 2 for all conjugates, so by Proposition 8.3, it is a finite set. That is,
αn = α for some n > 1, so αn−1 = 1, which is to say, α is a root of unity.

8.1.3 Existence of finite extension which kills class group

Proposition 8.5. Let K be a number field. Then there exists a finite extension L/K such
that every ideal of OK becomes principle in OL.

Proof. Let m = |Cl(OK)|, and choose representative ideals a1, . . . , am. Since m is the order
of Cl(OK), ami = 1, which is to say, ami is principle, so there exists ai ∈ OK such that
ami = (ai).

For each i, let αi = a
1/m
i be an mth root of ai in an algebraic closure of K, and let

L = K(α1, . . . , αm) be the finite algebraic extension generated by all the αi. Then in
Cl(OL), ami = (ai) = (αmi ) = (αi)

m. By unique factorization of ideals in Dedekind domains,
this implies ai = (αi).

8.1.4 Fundamental unit for real quadratic number fields

Theorem 8.6 (Dirichlet Unit Theorem). Let K be a number field with r1 real embeddings
and r2 pairs of complex conjugate embeddings. Then

O×K ∼= µ(K)× Zr1+r2−1

Remark 8.7. In the case of a quadratic extension K = Q(
√
d) with d a square-free integer,

the unit theorem says

1. If d > 0, there are two real embeddings so r1 = 2 and no complex embeddings so
r2 = 0. Since K embeds in R, the only roots of unity are ±1, so the unit theorem gives

O×K ∼= {±1} × Z

2. If d < 0, there are no real embeddings so r1 = 0 and there is one pair of complex
conjugate embeddings so r2 = 1. So OK has no torsion free part.

O×K ∼= µ(K)

Even more precisely, if d = −1, then µ(K) = Z/4Z, but if d ≤ −2, µ(K) = {±1}.
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Definition 8.8. For a real quadratic number field Q(
√
d) with d > 0, a generator for the

infinite cyclic factor of O×K is called a fundamental unit. It is traditionally denoted by ε.

Remark 8.9. Let K = Q(
√
d) be a real quadratic number field. The following is an

algorithm for finding a fundamental unit.

1. If d ≡ 2, 3 mod 4, compute the sequence b2d for b = 1, 2, . . ..

d, 4d, 9d, 16d, . . .

until b2d differs from a square by ±1. For the first b such that b2d = a2 ± 1, the
fundamental unit is ε = a+ b

√
d.

2. If d ≡ 1 mod 4, compute the same sequence b2d for b = 1, 2, . . ., until b2d differs from
a square by ±4. For the first b such that b2d = a2 ± 4, the fundamental unit is
ε = 1

2
(a+ b

√
d).

We omit the reasons why this works for the moment. It’s basically a brute force argument.

Problem 8.10. Find the fundamental unit for each of the following.

1. Q(
√

7)

2. Q(
√

82)

3. Q(
√

5)

4. Q(
√

13)

Solution. (1) This fits in the case d ≡ 2, 3 mod 4. The sequence b2d is 7, 28, 63, . . . and
63 = 64− 1, so the fundamental unit is ε = 8 + 3

√
7.

(2) This fits in the case d ≡ 2, 3 mod 4. The sequence b2d starts with 82 which already
differs from a square by ±1, so the fundamental unit is ε = 9 +

√
82.

(3) This fits in the case d ≡ 1 mod 4. The first term of the sequence b2d is 5 which already
differs from the sqaure 1 by 4, so a1 = b1 = 1 and the fundamental unit is ε = 1

2

(
1 +
√

5
)
.

8.2 Local fields

8.2.1 Example ramification and residual degree calculations

Problem 8.11. For each of the following, compute the ramification and residual field degrees
e(L/K), f(L/K).

1. K = Q5, L = Q5(
√

2).

2. K = Q5, L = Q5(
√

5).

3. K = Q3, L = Q3(
√

2, ζ) where ζ is a primitive 3rd root of unity.
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Solution.
(1) Normalize the discrete valuation on K so that vK(K×) = Z and vL(L×) = 1

e
Z. Note that

NL
K(
√

2) =
√

2(−
√

2) = −2

so
|
√

2|L = |2|1/2K = 1

so
√

2 ∈ OL. Thus there is an element of the residue field kL = OL/mL which is a root of
x2−2. Since x2−2 is irreducible over kK ∼= F5, the extension kL/kK has degree greater than
1, that is, f > 1. Since ef = 2, this forces f = 2, e = 1. Hence Q5(

√
2) is totally unramified

over Q5.

(2) Normalize the discrete valuation on K so that vK(K×) = Z and vL(L×) = 1
e
Z. Then

1 = vL(5) = 2vL(
√

5) =⇒ vL(
√

5) =
1

2

Thus e ≥ 2, so f = 1, e = 2, and
√

5 is a uniformizer.

(3) Note that [L : K] = 4.

Q3(
√

2, ζ)

Q3(ζ) Q3(
√

2)

Q3

2 2

22

Note that ζ is a root of x2 + x+ 1 over Q3. By a similar argument as (1),

e
Q3(
√
2)

Q3
= 1 f

Q3(
√
2)

Q3
= 2

Regarding Q3(ζ), we observe that

x2 + x+ 1 = (x− ζ)(x− ζ2) =⇒ 3 = (ζ − 1)(ζ2 − 1)

=⇒ vQ3(ζ)(3) = 1 = vL(ζ − 1) + vL(ζ2 − 1)

Since ζ − 1, ζ2 − 1 are Galois conjugates, they have equal valuation. Hence

vL(ζ − 1) =
1

2

so
eQ3(ζ)Q3 = 2 f

Q3(ζ)
Q3

= 1

Returning to our original diagram, we can write in the ramification and residual degrees
we computed. Since all the extensions are degree 2, we can also deduce ramification and
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residual degrees for the upper extensions and the total extension L/K by multiplicativity in
towers.

Q3(
√

2, ζ)

Q3(ζ) Q3(
√

2)

Q3

e=2, f=1 e=1, f=2

e=2, f=1e=1, f=2

By multiplicativity in towers,
eLK = fLK = 2

8.2.2 Hensel’s lemma

Proposition 8.12 (Hensel’s lemma, version 1). Let K be a complete nonarchimedean dis-
cretely valued field, with associated local ring (OK ,m), and residue field k = OK/m. Let
f ∈ OK [x], and suppose there exist g1, h1 ∈ OK [x] with g1 monic and gcd(g1, h1) = 1 such
that

f = g1h1 ∈ k[x] (equivalently f ≡ g1h1 mod m)

Then there exist g, h ∈ OK [x] such that g is monic, g = g1, h = h1, and f = gh. That
is, factorizations of polynomials over k lift to factorizations over OK, provided there are no
common factors and one is monic.

Remark 8.13. This is hardly worth stating, but the “converse” of Hensel’s lemma is obvious.
If f factors in in OK [x], then applying the quotient map OK → OK/m to the coefficients
gives a factorization in k[x].

Remark 8.14. In particular, we care about the case K = Qp,OK = Zp,m = pZp, k = Fp.
In this case, Hensel’s lemma says that if a polynomial f(x) ∈ Zp[x] has a factorization mod p
into relatively prime factors, then that factorization comes from a factorization in Zp.

In particular, Z ⊂ Zp, and this is where Hensel’s lemma is often applied, at least in
examples. Suppose we want to know if some polynomial equation f(x) = 0 with f ∈ Z[x]
has a solution in Qp or Zp. If we find a factorization of f with a monic, non-repeated linear
factor (x − a) where a ∈ Fp, then that factorization lifts to a factorization of f in Zp[x] so
there is a lift of α ∈ Zp so that α = a and f(α) = 0. The next corollary says this more
precisely.

Corollary 8.15 (Hensel’s lemma, version 1, for Qp). Let f(x) ∈ Zp[x]. If f(x) ∈ Fp[x] has
a simple root a, that is, there exists a ∈ Fp such that f(a) = 0 and f ′(a) 6= 0, then there
exists a unique α ∈ Zp such that f(α) = 0 and α = a.

We also need another version of Hensel’s lemma at one point later.

Proposition 8.16 (Hensel’s lemma, version 2). Let K be a complete nonarchimedean dis-
cretely valued field, with associated local ring (OK ,m). Let f(x) ∈ OK [x] be monic. Suppose
a ∈ OK such that

f ′(a) 6= 0 |f(a)| < |f ′(a)|2
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Then there exists a unique α ∈ OK such that f(α) = 0 and

|a− α| ≤
∣∣∣∣ f(a)

f ′(a)

∣∣∣∣
Proposition 8.17. Let p be a prime.

1. If p ≥ 3, then: u ∈ Z×p is a square ⇐⇒ u ∈ F×p is a square.

2. If p = 2, then: u ∈ Z×2 is a square ⇐⇒ u ≡ 1 mod 8.

Proof. (1 =⇒ ) If u = α2 ∈ Zp then u = α2 ∈ F×p .
(1 ⇐= ) Suppose u = a2 ∈ Fp. Consider f(x) = x2 − u ∈ Zp[x]. Then

f(x) = x2 − u = x2 − a2 = (x− a)(x+ a)

Note that f ′(a) = 2a 6= 0 since p ≥ 3, so we can apply Corollary 8.15 to conclude that there
is a root α ∈ Zp of f , so u = α2.

(2 =⇒ ) If u = a2 ∈ Z2, then u ≡ a2 mod 8.
(2 ⇐= ) Suppose u2 ≡ 1 mod 8. Consider f(x) = x2 − u ∈ Zp[x]. We want to apply

version 2 of Hensel’s lemma to f(x) with a = 1. It is clear that f ′(1) = 2 6= 0. Since
u2 − 1 ≡ 0 mod 8,

|f(1)|2 = |1− u2|2 ≤
1

8
<

1

4
=
(
|2|2
)2

=
(
|f ′(1)|2

)2
so the hypotheses are satisfied. Thus there exists α ∈ Zp such that α2 − u = 0, which is to
say, u is a square in Z2.

8.2.3 A concrete failure of the Hasse principle

Remark 8.18. The Hasse principle asserts that “global” information is related to “local”
information, in the sense that existence of solutions in Q to some equation are related to
existence of solutions in all local field completions of Q, namely Qp for all p and R. This is
exactly true in the case of quadratic forms - the Hass-Minkowsi theorem says that a quadratic
form has a solution in Q if and only if there is a solution in every Qp and a solution in R.
However, it fails for higher degree forms, as given by the following example.

Lemma 8.19. Let p be an odd prime, and let a, b be quadratic non-residues mod p. Then
ab is a quadratic residue mod p.

Proof. If a, b are both non-residues, they both represent the same nontrivial class in F×p /F×2p ∼=
Z/2Z (this isomorphism uses the fact that p−1 is even). Then ab represents the trivial class,
that is, ab ∈ F×2p .

Proposition 8.20. The equation

(x2 − 2)(x2 − 17)(x2 − 34) = 0

has a root in Qp for all primes p and in R, but no root in Q.
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Proof. It is clear that there is no root in Q, since 2, 17, and 34 are not squares, and it is
clear that there are roots in R. Since 17 ≡ 1 mod 8, by Proposition 8.17, there is a root of
x2 − 17 in Q2.

Now let p be an odd prime. It suffices to show that at least one of 2, 17, 34 is a square in
Qp. By Proposition 8.17, if u ∈ Q×p is a quadratic residue mod p, then it is a square in Qp.
If either 2 or 17 is a quadratic residue mod p, we are done. If both are non-residues, then
by Lemma 8.19, then 34 = (2)(17) is a quadratic residue, so it is a square in Qp.

Remark 8.21. The proof of the previous proposition actually yields an infinite family of
equations for which the Hasse principle fails. For any prime of the form p = 8k+ 1, and the
proof above shows that

(x2 − 2)(x2 − p)(x2 − 2p) = 0

has a solution in every Qp and in R but no solutions in Q.
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